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Global vital statistics performance index (Mikkelsen et al. [40])

Global Vital Statistics Performance Index

Missing

▶ about 60% of deaths - 36.5 million in 2023

▶ about 35% of births - 46.9 million in 2023



Burden of disease and cause of death determination

Burden of disease - BOD

▶ BOD is the distribution of deaths by cause

▶ BOD is fundamental population health metric

▶ Little empirical knowledge of the BOD for Africa and other
resource-constrained settings

COD determination

▶ Registering and establishing a cause for all deaths are important
population health priorities

▶ Traditional methods for COD determination are not feasible in
resource-constrained settings

▶ The only realistic alternative is verbal autopsy - VA
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Verbal autopsy – VA

Aim: Assign a cause to a death with VA – classify the death using an
abbreviated VA cause list

Data:

1. Data from VA interview with knowledgeable caregiver of decedent
▶ quantitative questions on signs, symptoms, diagnoses, durations, etc.
▶ respondent’s free-form narrative account of period leading up to death

2. Symptom-cause information (SCI) that describes the relationships
between VA signs/symptoms and causes included in the VA cause list

Classification:

1. Physicians review VA data and assign causes: PCVA

2. Automated statistical/computational algorithms assign causes using VA
data and SCI: CCVA



VA is an imperfect and frustrating approach

Advantages

▶ FEASIBLE compared to traditional COD determination: autopsy, medical
review, etc.

▶ Comparatively cheap

▶ Comparatively tractable – logistics, skills, etc.

▶ With computer coding:
▶ does not require advanced skills
▶ produces reproducible cause assignments in a timely fashion
▶ no physician opportunity costs

▶ Capable of providing highly useful COD and BOD information for public
health assessment and planning

Disadvantages

▶ Much less accurate compared to traditional COD determination: autopsy,
medical review, etc.

▶ Abbreviated cause list that does not easily mesh with full ICD cause lists,
large catch-all causes

▶ Inherently low-information with many potential sources of error and bias:
classification is difficult



Why I work on VA

▶ VA is a challenging approach that often produces underwhelming – but
still useful – results

▶ Computer-coded VA is the only feasible solution for large-scale COD
determination in resource-constrained settings without functioning vital
statistics systems

▶ The remainder of this talk will be a technical discussion of the InSilicoVA
automated cause coding algorithm for VA data developed by myself,
Richard Li, and Tyler McCormick

https://zehangli.com
https://thmccormick.github.io
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VA Algorithms

VA cause-coding algorithms have three separable components

1. The VA data themselves

2. SCI that describes the relationship between VA symptoms and VA causes

3. The logic of the algorithm itself – mathematical, computational, statistical

The performance of each algorithm depends on both its logic and the SCI
it uses

SCI can be swapped in/out and updated

This means that the performance of an algorithm can evolve and be adapted to
a particular population

We will focus on algorithm logic and come back to SCI



Foundation for InSilicoVA: InterVA’s origin, usage, and future

InSilicoVA originates with and fixes many weaknesses of InterVA, so we start
with a discussion of InterVA

▶ InterVA (for ‘Interpret VA’) was developed by Peter Byass and his
colleagues over many years, e.g. [8, 7, 17, 19, 10, 49, 21, 6, 9]

▶ InterVA is widely used and has been validated in a variety of ways – many
substantive publications have relied on InterVA, e.g.

[4, 44, 17, 3, 49, 11, 20, 21, 41, 12, 24, 50, 2, 37, 18, 46, 45, 6, 52, 48,
31, 47, 1, 42, 29, 16, 32, 5, 22, 43, 39]

▶ The last version is InterVA-5 [9]

▶ Peter Byass passed away during the pandemic; the openVA Team
maintains openVA software that implements InterVA-5 but does not
intend to produce any new updates



InterVA

InterVA is a computational algorithm designed

1. To distribute a single death across a number of causes with more weight
on causes that are more consistent with the signs/symptoms associated
with the death

2. Generate a population-level distribution of causes by summing up the
fractions of a death associated with each cause across all individuals in the
population



InterVA details 1

Notation

▶ J deaths: yj

▶ N causes of death: cn

▶ Death yj with cause cn: yjn

▶ K sign/symptoms: sk ∈ {0, 1}
▶ Vector of signs/symptoms for an individual death: S⃗j

▶ Cause-specific mortality fractions (CSMF): fn



InterVA details 2

Data

▶ For each death yj , the VA interview produces a binary-valued vector of
signs/symptoms

S⃗j = {sj1, sj2, . . . sjK}

▶ Symptom-cause information in the form of ‘probbase’: a K × N matrix of
conditional probabilities

Pr(s1|c1) Pr(s1|c2) · · · Pr(s1|cN)
Pr(s2|c1) Pr(s2|c2) · · · Pr(s2|cN)

...
...

. . .
...

Pr(sK |c1) Pr(sK |c2) · · · Pr(sK |cN)





InterVA details 3

Using Bayes’ Rule we can derive an expression for what we want: the
probability of a death with cause cn, given that a specific set of symptoms were
present or not present

Pr(yjn, S⃗j) = Pr(yjn|S⃗j) Pr(S⃗j) = Pr(S⃗j |yjn) Pr(yjn)

Pr(yjn|S⃗j) =
Pr(S⃗j |yjn) Pr(yjn)

Pr(S⃗j)
(1)



InterVA details 4

Assuming signs/symptoms are independent given cause, the probability of a
specific sign/symptom vector is the product of the applicable probbase
Pr(sk |cn) values when a sign/symptom exists and their complements when the
sign/symptoms do not exist, so equation 1 can be expanded,

Pr(yjn|S⃗j ) =
Pr(yjn)

∏K
k=1 Pr(sk |cn)

sjk [1− Pr(sk |cn)](1−sjk )∑N
n′=1

(
Pr(yjn′ )

∏K
k=1 Pr(sk |cn′ )

sjk [1− Pr(sk |cn′ )](1−sjk )
)

Note

▶ Uses both presence and absence of symptom

▶ NOT how InterVA works!



InterVA details 5

To get InterVA

▶ keep pieces in blue that correspond to the presence of a sign/symptom

▶ drop pieces in red that correspond to absence of a sign/symptom

Pr(yjn|S⃗j ) =
Pr(yjn)

∏K
k=1 Pr(sk |cn)

sjk [1− Pr(sk |cn)](1−sjk )∑N
n′=1

(
Pr(yjn′ )

∏K
k=1 Pr(sk |cn′ )

sjk [1− Pr(sk |cn′ )](1−sjk )
)

Although not explained explicitly in the literature, it appears that the
absent-symptom factors were dropped because most VA data available at the
time did not have information on missing symptoms



InterVA details 6

With these deletions, InterVA calculates something different

Pr(yjn)
∏K

k=1 Pr(sk |cn)
sjk∑N

n′=1

(
Pr(yjn′)

∏K
k=1 Pr(sk |cn′)sjk

) = Pr(yjn|S⃗ ′
j )

where S⃗ ′
j is a vector that contains the subset of the elements of S⃗j whose

values are all equal to 1

In general

Pr(yjn|S⃗j) ̸= Pr(yjn|S⃗ ′
j )

except in the unique case when S⃗j and S⃗ ′
j have the same number of elements

and all the elements of both are equal to 1; in general not true



InterVA details 7

▶ We refer to the InterVA result quantities Pr(yjn|S⃗ ′
j ) as ‘cause-specific

propensities’

▶ InterVA reports the three causes with the largest propensities that exceed
0.4

▶ If there are no propensities with magnitudes larger then 0.4, the cause is
reported as ‘indeterminate’

▶ 0.4 is an arbitrary threshold for which we cannot find any justification

▶ InterVA calculates CSMFs by summing cause-specific propensities across
all deaths for each cause:

fn =
J∑

j=1

Pr(yjn|S⃗ ′
j )



InterVA: Implications

InterVA

▶ Does not compute the probability Pr(yjn|S⃗j) – not a probabilistic algorithm

▶ Computes probable cause conditional only on symptoms that were present,

the propensity Pr(yjn|S⃗ ′
j )

▶ Critically, this is fundamentally a different quantity for each death and
therefore not comparable across deaths

▶ Does not differentiate between observed absence of a sign/symptom and
unobserved or missing

▶ Sensitive to noise in data and obscures data issues related to symptoms that
do not exist

▶ CSMFs are deterministic rescaling of individual-level cause determination

▶ Lots of other issues we don’t have time for . . .
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InSilicoVA Setup

InSilicoVA (for on-chip/computational VA) is a statistical-computational
algorithm that

1. At the individual level identifies a distribution of probabilities associated
with each cause

2. At the population level identifies a distribution of counts of deaths for
each cause

3. Links the two so that they are consistent with each other

4. Through these distributions quantifies uncertainty at both levels, again so
that each is consistent with the other

5. Utilizes information from all deaths to help classify each death

6. Is comparatively robust to noise in data [15]

Uncertainty: if we are not sure about the cause for a death at the individual
level, then in a proportionate way, we cannot be sure about that death’s
contribution to the cause-specific mortality fractions at the population level



InSilicoVA algorithm in words

Imagine a joint distribution of CSMF vectors and cause-specific probabilities for
each death

Repeat the following steps many times, and for each loop, record the CSMFs
and cause-specific probabilities for each death

1. For each death, use the current CSMFs (anything to start), knowledge of
VA sign/symptom-cause relationships (SCI), and the VA data to calculate
the probability of each cause

2. Again for each death, using those cause-specific probabilities, draw a cause
from a multinomial distribution

3. Sum the deaths assigned to each cause to create a set of cause-specific
death counts

4. Using the cause-specific death counts, draw a new set of CSMFs from a
Dirichlet distribution

This procedure has two random steps that introduce uncertainty at the
individual and population levels, and the cause-assignment step keeps the two
levels linked together so that they are consistent with each other

The CSMFs aggregate information from all deaths and pass it along to each
individual death in the next step



InSilicoVA algorithm – equations 1

Notation for InSilicoVA, similar to InterVA

▶ J deaths: yj

▶ N causes of death: cn

▶ Deaths, each with 1 assigned cause: yjn ∈ {0, 1}; ∀j :
∑

n yjn = 1 and∑
j

∑
n yjn = J

▶ J × N matrix of cause assignments for each death: Y

▶ K sign/symptoms: sk ∈ {0, 1}
▶ Vector of signs/symptoms for individual j : S⃗j ; elements sjk

▶ For individual j , probability of cause n: ℓjn

▶ J × N matrix of cause-specific probabilities for each death: L

▶ Cause-specific death count (CSDC): mn

▶ Cause-specific mortality fraction (CSMF): fn

▶ Vector of CSMFs: F⃗ ;
∑

n fn = 1



InSilicoVA algorithm – equations 2

Following is a minimal description of InSilicoVA that illustrates the main ideas
only – the full, published model has lots of refinements and nuances, see [38]

Data

▶ For each death yj , VA interview produces a binary-valued vector of
signs/symptoms

S⃗j = {sj1, sj2, . . . sjk}

▶ Symptom-cause information as a K × N matrix of conditional probabilities
Pr(sk |cn) – the same as InterVA



InSilicoVA algorithm – equations 3

Sketch of the model/algorithm

▶ We are interested in the joint distribution (F⃗ ,L) – both unknown
quantities

▶ So, we introduce a data augmentation procedure and use simulated cause
assignments to stitch the two together

▶ Model CSMFs F⃗ conditional on cause assignments Y

F⃗ |Y ∼ Dirichlet(α⃗+ M⃗) (2)

where the elements of M⃗ are

mn =
J∑

j=1

yjn

This ties the CSMFs F⃗ to the cause assignments yjn



InSilicoVA algorithm – equations 4

▶ Model cause-assignments yjn conditional on CSMFs F⃗ and the data –

signs/symptoms S⃗j

yjn|S⃗j , F⃗ ∼ Multinomial(1, L⃗j) (3)

The n components of L⃗j are

ℓjn = Pr(yjn|S⃗j , F⃗ )

=
Pr(S⃗j |yjn, F⃗ ) Pr(yjn|F⃗ )

Pr(S⃗j |F⃗ )
∝ Pr(S⃗j |yjn, F⃗ ) Pr(yjn|F⃗ )

Assume signs/symptoms are independent given cause and therefore

independent of F⃗
ℓjn ∝ Pr(S⃗j |yjn) Pr(yjn|F⃗ )



InSilicoVA algorithm – equations 5

▶ The cause-specific mortality fraction for cause n fn is Pr(yjn|F⃗ ) and again,
assuming signs/symptoms are independent given cause,

Pr(S⃗j |yjn) =
K∏

k=1

Pr(sk |cn)sjk [1− Pr(sk |cn)](1−sjk )

So,

ℓjn ∝ fn

K∏
k=1

Pr(sk |cn)sjk [1− Pr(sk |cn)](1−sjk )

This ties the cause assignments yjn to the CSMFs F⃗



InSilicoVA algorithm – computation

Computation

▶ Take sample from joint distribution (F⃗ ,L) using a Gibbs sampler

▶ The model defines the conditional distributions we need

▶ Initialize the CSMF vector to a reasonable set of values and execute the
following 2 steps many times

1. Use equation 3 to draw a cause for each death
2. Use those cause assignments in equation 2 to draw a new CSMF vector

▶ After both F⃗ and L have settled into a stationary distribution, record the
values of both in a (large) number of steps

▶ This set of values approximates the joint distribution (F⃗ ,L)

▶ Summarize the margins of the sample as necessary to produce desired
outputs, usually distributions and a measure of their central tendencies for

▶ elements of F⃗
▶ for each death, the cause-specific elements of ℓ⃗j



InSilicoVA summary

InSilicoVA advances and advantages

▶ Provides mutually consistent estimates of individual-level probabilities of
dying and population-level CSMFs

▶ Both are reported as distributions so there is a metric of uncertainty for
both

▶ Builds on InterVA and utilizes the same SCI – immediately usable

▶ Provides information on all causes for all deaths, no ‘indeterminate’ cause
- wide, flat distributions instead

▶ Uses information from all deaths to strengthen each individual death
classification – equation 2 incorporates information from all deaths into
the CSMF that then informs the cause assignments for each death

▶ Compared to InterVA, much more robust to noise in data (reporting
errors) [15]

▶ Computationally feasible – barely, we are developing faster versions of the
software using C/C++



InSilicoVA main publication [38]

http://dx.doi.org/10.1080/01621459.2016.1152191


Miscellaneous observations of work on InSilicoVA

▶ We replicated work on InterVA and Tariff 1.0/2.0 algorithms and
implemented both in openVA

▶ Replication is very hard – literature is woefully incomplete in terms of
describing methods

▶ Both algorithms were available as proprietary implementations with no
source code – this made it even harder/impossible to really understand
what was going on

▶ Lots of not-described data pre-processing, automated data cleaning, etc.

▶ We conduct ourselves in the opposite way, hence the openVA Team

▶ As a result of our activities, all VA algorithms are now available as open
source software

▶ We are thoroughly committed to a transparent, open source approach to
creating, disseminating, and supporting methods

▶ We are working on several new approaches, but none are mature yet, see
[34, 30, 33, 36]
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South Africa VA validation study

We recently validated InSilicoVA, InterVA, and Tariff 2.0 using a high quality
VA study in South Africa

South Africa Medical Research Council conducted the South African National
Cause-of-Death Validation study [26]

A component of the study created a national sample of deaths with verbal
autopsy

▶ Fieldwork 2017 – 2019

▶ 2016 WHO Standard VA

▶ 5,387 respondents consented and VA completed

▶ Multiple physician cause coding

▶ Underlying cause determined by Iris [25]

▶ 4,535 VA deaths received an valid underlying cause

▶ HIV is a major cause of death: 22.8% of deaths



VA algorithm validation using South Africa VA validation study

Working with the South African team, the openVA Team

▶ Applied openVA algorithms InterVA-5, InSilicoVA, and IHME algorithm
Tariff 2.0 to the validation deaths

▶ Compared causes assigned by algorithms to reference causes identified by
physicians and Iris

▶ Calculated a variety of comparison metrics

▶ Published in December, 2023 [23]



Algorithm comparison 1



InSilicoVA rankings in performance comparisons

Population Group N First Second Third

Total Sample 4,534 6 0 0
Neonate (0-27 days) 82 4 2 0
Child (28 days – 11 years) 165 5 0 1
Adult (12 – 49 years) 1,812 2 4 0
Elder (50+ years) 2,475 4 2 0
Male 2,400 3 3 0
Female 2,134 6 0 0
Died in Health Facility 2,591 4 2 0
Died Out of Health Facility 1,943 6 0 0

Total 40 13 1

Looks good. But, examination of results reveals that none of the algorithms
performed exceptionally well and the magnitude of InSilicoVA’s lead is often
small

Still work to do



South Africa VA validation study [23]

https://doi.org/10.1080/16549716.2023.2285105
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ALPHA Network HDSS cause-specific mortality study

Work with Clara Calvert, Yue Chu, Milly Marston and ALPHA Network HDSS
sites [13]

▶ Harmonized all exposure, death, and VA data from 9 health and
demographic surveillance system sites (HDSS) in East and Southern Africa
– all are high HIV prevalence populations

▶ Apply InSilicoVA to ascertain cause of death from VA

▶ Calculate trends in all-cause and cause-specific mortality

▶ Manuscript in review; hopefully out soon

https://www.research.ed.ac.uk/en/persons/clara-calvert
https://ipr.osu.edu/people/chu.282
https://www.lshtm.ac.uk/aboutus/people/marston.milly
https://alpha.lshtm.ac.uk


ALPHA Network all-cause mortality trends



ALPHA Network cause-specific mortality fractions 1
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openVA Suite

The openVA Team has developed and supports a range of software for VA,
including InSilicoVA

▶ openVA: https://cran.r-project.org/package=openVA

▶ InSilicoVA: https://cran.r-project.org/package=InSilicoVA

▶ interVA5: https://cran.r-project.org/package=InterVA5

▶ interVA4: https://cran.r-project.org/package=InterVA4

▶ Tariff 1: https://cran.r-project.org/package=Tariff

▶ CrossVA: https://cran.r-project.org/package=CrossVA

▶ pyCrossVA: https://pypi.org/project/pycrossva/0.92/

▶ openVA Pipeline: https://pypi.org/project/openva-pipeline/

▶ Python openVA – in final testing, release planned mid 2024

▶ Others: https://github.com/verbal-autopsy-software

▶ User-oriented description and tutorial – The openVA Toolkit for Verbal
Autopsies [35]

The openVA Suite is the reference implementation of VA algorithms that
support WHO VA standards and is used by a wide variety of researchers and
CRVS organizations globally

https://openva.net
https://cran.r-project.org/package=openVA
https://cran.r-project.org/package=InSilicoVA
https://cran.r-project.org/package=InterVA5
https://cran.r-project.org/package=InterVA4
https://cran.r-project.org/package=Tariff
https://cran.r-project.org/package=CrossVA
https://pypi.org/project/pycrossva/0.92/
https://pypi.org/project/openva-pipeline/
https://github.com/verbal-autopsy-software
https://journal.r-project.org/articles/RJ-2023-020/
https://journal.r-project.org/articles/RJ-2023-020/


openVA Toolkit [35]

https://journal.r-project.org/articles/RJ-2023-020/
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Issues that InSilicoVA doesn’t solve

Limitations of InSilicoVA

▶ Assumes conditional independence of symptoms – lots of information lost

▶ Does not utilize free text account part of VA data – physicians place great
weight on this, more information lost

▶ Does not recognize or account for different epidemiological domains

Additional challenge: SCI is not sufficiently informative

▶ Current SCI – Pr(s|c) – is inadequate, out of date, static, and related to
limited epidemiological settings

▶ Two options to create SCI: elicite from physicians or calculate from
reference deaths

▶ Physicians are comparatively easy and cheap but provide less nuance and
essentially no information on dependence among symptoms

▶ Reference deaths are very hard to accumulate in sufficient numbers but
potentially provide much more information, e.g. dependence among
symptoms and domain-specific information



The key role of SCI

▶ We have demonstrated that with current algorithm logics, the SCI is at
least, and often more, important than the algorithm logic in explaining the
differences in algorithm performance [14]

▶ We have also shown that SCI dramatically affects algorithm performance
and that, as expected, SCI is domain-specific [14, 38]

▶ Consequently, improving SCI is arguably more important than improving
algorithm logic

▶ Two options for better SCI
▶ Improved physician-elicited Pr(s|c), or
▶ Large collection of reference deaths with VA and independent reference

cause to infer/estimate/calculate new, more informative SCI

https://arxiv.org/abs/1803.07141


WHO 2022 VA and ‘probbase’ update – update to physician-elicited SCI

▶ The WHO VA Reference Group and Data for Health partners created an
streamlined and strengthened, post-CV19 update to the WHO Standard
VA

▶ The 2022 VA is much shorter, smoother, and has CV19 as a new cause

▶ This requires a big update to the algorithms and completely new SCI – the
Pr(s|c) in the probbase

▶ Supported by the Data for Health Initiative through the CDC Foundation,
I am currently leading a team of about 70 people, mostly physicians, to
create a new physician-based SCI for the 2022 standard VA

▶ The openVA algorithm code has been updated and is ready to go

▶ Anticipate testing the new 2022-compatible algorithms in late 2024



Reference Death Archive

The openVA Team with many partners is currently creating a global reference
death archive for VA

▶ Reference deaths from many sites around the world, many with reference
deaths informed by pathology through minimally-invasive tissue sample
(MITS – autopsy-light)
▶ Cover wide variety of epidemiological domains and develop/test

domain-adaptive algorithms
▶ Updated through time
▶ Include enough deaths to estimate dependencies among symptoms and

include those in new algorithms

▶ Hosted at WHO in Geneva, globally available

▶ Many reference deaths from mortality surveillance units in Brazil who are
conducting traditional autopsy and WHO 2022 VA

▶ Supported by Bill and Melinda Gates Foundation; right now mired in
bureaucratic setup activities around the world!



Interview

▶ We have demonstrated that reporting error can dramatically reduce
algorithm performance [15], InSilicoVA is more robust to this

▶ For this reason, the quality and consistency of the VA interview is critical

▶ Clarissa Surek-Clark – sociolinguist/translator/interpreter, Nicole Angotti
– sociologist/demographer, and soon Brian Houle –
sociologist/demographer are conducting qualitative studies of the VA
interview, language usage, and translation/interpretation issues aiming to
▶ improve the interview experience for respondent and interviewer – whole

topic for a different talk
▶ standardize the interview design and conduct of interviews
▶ standardize the way languages are handled, processed, etc.
▶ develop a standard protocol for narrative account elicitation

▶ The hope is to greatly improve the conduct of the interviews and the
quality and consistency of the VA data they produce

▶ A key goal is to greatly improve the free-text narrative account so that it
is respondent-friendly and maximally useful for machine-based text
processing

https://csss.uw.edu/files/working-papers/2013/wp133.pdf


Incorporating free-form text from account

Physicians place great weight on the narrative account when assigning causes
to VA deaths

▶ InSilicoVA does not use any part of the account

▶ We are exploring various ways of producing consistent, useful information
from the accounts using off-the-shelf NLP methods – not going very well

▶ Attempts have been made to classify VA deaths based solely on
automated text processing of accounts – doesn’t work well yet, many
studies exaggerate performance by truncating/aggregating the cause list,
e.g. [28, 51, 27]

▶ This effort is combined with work on the interview to ensure that
elicitation of text-based accounts is both maximally meaningful and
consistent with the needs of automated text processing methods

▶ Various approaches to incorporating text into algorithms are being
considered; anticipate significant improvement in algorithm performance
when text-based information is available



Download slides: https://samclark.net/talks – Contact: sam@samclark.net

https://samclark.net/site/talks/Sam-Clatrk_InSilicoVA.pdf
mailto:sam@samclark.net
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