Multi-disciplinary Data Science to Improve Global Health: Verbal Autopsy

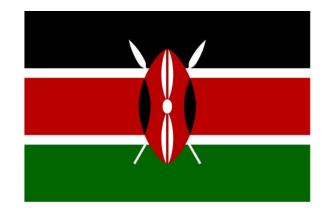
Sam Clark

Notestein Seminar OPR, Princeton September 12, 2023

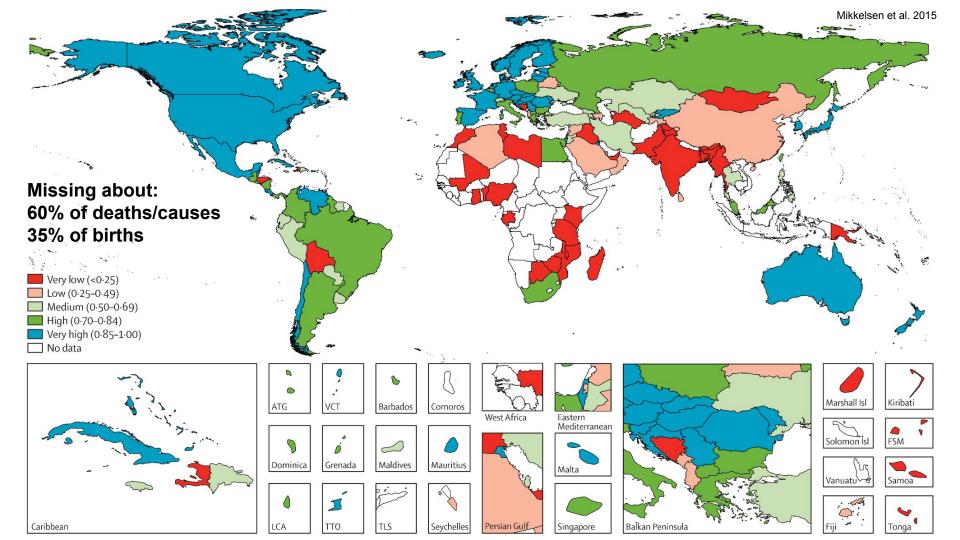
Data science for social good - DSSG

- Social
 - Something related to the welfare of individual people and/or groups of people
- Good
 - Improvements can be made (and?) commercial/market-driven system not acting
 - *Something specific* has to change in a positive way
 - Change needs to be *sustained*
- Data science
 - New information can help
 - New analytical approaches can help
- Research
 - Create new methods that incorporate (new?) data and result in new knowledge
- Implementation
 - Translate research into sustained, useful practice

Questions about DSSG


- Academia
 - Institutions talk a lot about it, claim to value it, few specifics!
 - How should academics train and be involved?
- How do we keep analytics honest, fair, representative?
- Who else is involved and how do we work effectively with them?
- What is 'research' in the context of DSSG
 - How do we get academic credit e.g. credit toward tenure/promotion for this work?
 - What are products or impacts that can go on an academic CV?
- Potentially a lot of money involved
 - Fund raising: foundations, industry, etc.?
 - Salable products, start-ups, for-profit partnerships?
- What is 'data science exactly' data, methods, and ?
- What responsibility do we have to apply results *legally*, fairly, usefully

Guidelines & accountability for academics doing DSSG


- 1. Is the ultimate objective a consequential social good?
- 2. Is the approach
 - a. Affecting inequality in a negative way?
 - b. Feasible in the target context?
 - c. Self-sustainable in the target context?
- 3. What are potential unintended consequences, positive and negative?
- 4. Can negative unintended consequences be resolved?
- 5. Is there a feasible, useful plan for the future
 - a. How do academics disengage?
 - b. If academics must be continually involved, how is this supported?
- 6. Is the overall approach academically sustainable
 - a. Academic training
 - b. Academic career progression: hiring, tenure, promotion

How did I get to DSSG?

- Born in <u>Kenya</u> and and grew up <u>Tanzania</u> and <u>Kenya</u>
- Moved to USA at age 16
- Undergraduate at Caltech
 - BS Biology (neurobiology)
 - BS Engineering (computer science, electrical engineering)
- Graduate work at Penn
 - PhD Demography
 - Fulbright field work in Zambia
- Postdoc in South Africa
 - 5 years working with health and demographic surveillance system sites
- About 10 years working with statisticians and UN Populatino Division on methods

Verbal Autopsy

Verbal autopsy basics

- Old method 50s onward (Chandromohan et. al, 2021)
- Only feasible method where traditional death certification/autopsy are not possible
- *Very* challenging in general
 - Interview is difficult
 - Data are inherently noisy and contain comparatively little information
 - Cause classification task has many dimensions compared to information
 - Cause classification is extremely challenging!
 - Results are noisy and uncertain and require careful interpretation
 - Although feasible, implementation still very difficult
- Consequential, many potential users, and lots to do

Verbal autopsy basics

- Predefined
 - VA causes
 - Important signs/symptoms VA indicators
 - *Symptom-cause information* that links indicators with causes
- Interview close caregiver(s) of recently dead
 - 100s of close-form questions
 - Narrative account of death
- Data are used to classify death into VA cause list
- Result
 - **COD**: individual-level cause of death in predefined VA cause list
 - BOD: population-level cause-specific mortality fractions (CSMF) distribution of deaths by VA cause

VA instrument

- Two standard instruments
- WHO global standard
 - Early 2000s until now
 - Number of versions and revisions
- Population Health Metrics Research Consortium (PHMRC) standard
 - Mid 2000s until now
 - 'Long' and 'short' versions
- Each instrument family is foundation of it's own ecosystem of
 - Interview
 - Coding mechanisms
 - Interpretation

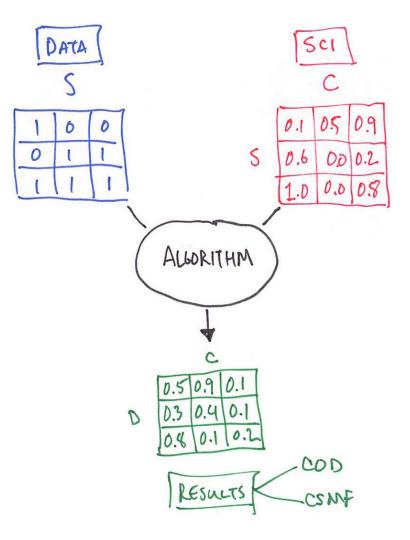
VA Interview

- Standard instruments in electronic form
 - WHO uses Open Data Kit (ODK) definition
- Conducted in many languages and socio-cultural contexts
- Apart from standard training materials, not much done to standardize
- Implementers always modify and add/subtract
- Very complex, long interview
- Emotionally challenging/draining for both respondent and interviewer
- Lots of different languages and cognitive frameworks involved across resource-constrained settings where VA used
- Important source of consequential variability in VA data
- Urgent area for more research and improvement

VA data

- Complex instrument and challenging interview → require systematic checking for quality and consistency
- Two forms of VA data
- Raw data
 - Full responses to closed-form questions
 - Sometimes narrative account as free-form text
- Processed VA indicators for automated algorithms
 - Closed-form questions converted to algorithm-ready binary indicators
 - Narrative account processed to produce word counts
 - Narrative account as free text

Physician-coded VA - PCVA


- Traditional approach to classifying VA deaths by VA cause
- Physicians read interview transcript and identify most likely cause(s)
- Physicians often disagree
- Standard practice
 - Multiple physicians code
 - Consensus process to produce final cause
- CSMFs as sum of deaths with each cause
- Characteristics
 - Comparatively specific causes
 - More accurate in general
 - Non-replicable, inconsistent, contextual
 - Slow, costly
 - Takes often scarce physician time from living patients

Computer-coded VA - CCVA

- 3 components
 - VA data
 - Symptom-cause information (SCI)
 - Algorithm logic

• Characteristics

- Cheap, fast
- Replicable
- Does not require physician time
- Can be fully automated
- Can be integrated into routine systems
- Comparable
- Comparatively less specific causes
- Less accurate in general
- Challenges with context-specific performance

0

VA cause of death - COD

- Individual-level cause of death using VA cause list
- Physicians produce either single cause or underlying, immediate, contributing
- Algorithms
 - Produce a decimal-valued metric for each cause, large values more likely
 - Metrics used to rank causes, usually cause with largest metric value is reported
 - For some algorithms, if no causes have metric above given threshold, then reported cause is 'undetermined'
 - Most algorithms are deterministic and do not report uncertainty/confidence
 - **InSilicoVA** is probabilistic and produces distributions of probabilities for each cause

VA burden of disease - cause-specific mortality fractions

- Burden of disease (BOD) is distribution of deaths by cause
- Population-level metric consisting of distribution of deaths by cause for a specified population
- VA terminology cause-specific mortality fractions (CSMF)
- In most circumstances physicians and most algorithms
 - Top cause for individual deaths summed to create CSMFs
 - Deterministic process that does not translate any uncertainty in individual COD to population level
 - **InSilicoVA** produces distributions of CSMFs for all causes that are consistent with underlying individual-level COD probability distributions

My goals for VA work

- Research
 - Create and maintain/evolve global standards for VA
 - Greatly improve replicability and comparability of VA COD, BOD VA results comparable from regions, historical periods, specific contexts
 - $\circ \quad \text{Improve VA interview} \rightarrow \text{greatly improve VA data}$
 - Improve VA algorithms accuracy, uncertainty, context-specific performance, broad comparability of results, account for changing epidemiological circumstances over time, etc.
 - Create robust software research and routine use
 - Create Reference Death Archive SCI, algorithm development and validation
- Implementation
 - Create methods and software to integrate automated VA algorithms into routine mortality surveillance
 - Support roll-out of routine-use VA software CRVS
 - Continuous reporting of COD and BOD at scale in wide variety of settings

Implementing Countries:

- Rwanda
- Ethiopia •
- Tanzania

Countries ~

Zambia

World Health

< Classification Other Classifica

Primary Care

External Causes of Injury (ICECI

echnical aids for persons wit disabilities

The Startup Mortality List (ICD-10-SMol.)

The Anatomical Therapeur with Defined Daily Doses (ATC/DDD)

Health Topics

- Solomon Islands
- About 20 more waiting

Newsroom >

Verbal autopsy instrument 2022

iome / Classifications / Other Classifications / Verbal autopsy standards: ascertaining and attributing causes of death tool

Emergencies ~

WHO interactive map on the use of the WHO verbal autopsy instrument

About WHO

Nae-CRVS

ine CIVS

ON OL & COMSA, SAW

P HPHP Hu

MEDICINA

TSP

Yue Chu

Sam Clark

Principal Investigator

Nicole Angotti

Eungang Peter Choi

Sherry Zhao

::::

CDC Foundation

Zhenke Wu

Supporters & Partners

Vital Strategies

NICHD

ALPHA NETWORK

Alpha Network

The Ohio State University

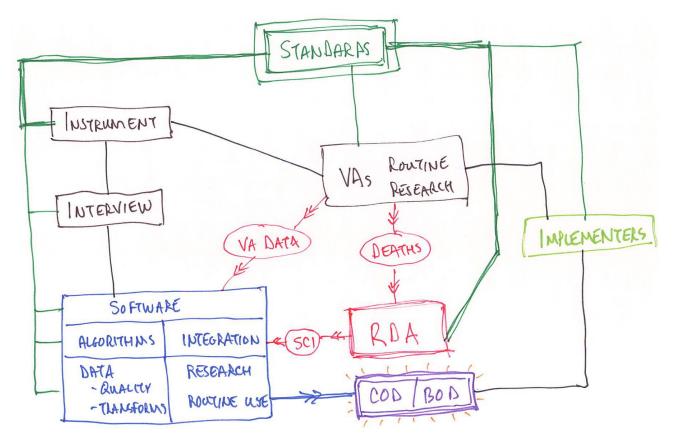
Bloomberg Philanthropies X DATA FOR

U.S. Centers for Disease Control and Prevention

CDC

Bloomberg Philanthropies

Zehang Richard Li


openVA Team

Research Team

Yoonyoung Choi

What the openVA Team does

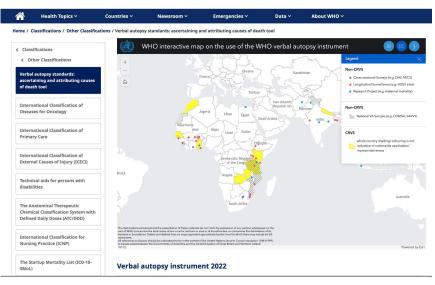
VA Interview

- Objective: standardize VA interview to extent possible
 - Improve data quality
 - Improve comparability of VA overall
- Challenges
 - Wide variety of languages, cognitive frameworks
 - Poor training and maintenance of VA field teams
 - Extremely heterogeneous interview design, no standards, effectively no training
 - Electronic data capture is poor quality, uneven, affects data: ODK
- Observe VA field operation and interview in many settings
- Characterize VA interview language usage and translation practices
- Address issues!

VA cause-ascertainment algorithms - 1

- Extremely fractious field/literature
 - Disingenuous publishing
 - Rivalries
 - Everything hidden, proprietary, non-reproducible
- Replicate/reverse engineer all algorithms
- Create open-source versions of all algorithms
- Create standard software framework for running all algorithms
- Create new algorithm InSilicoVA
- Work to improve symptom-cause information for all algorithms
- Work on next generation of algorithms
 - Incorporate dependence among VA indicators
 - Address domain specificity
 - Improve computational performance

VA software


- Very firm commitment to open source software paradigm → <u>open</u>VA
- All theoretical work on algorithms accompanied by complete, working, open-source code
- Unify software application of all algorithms
- Maintained R packages on CRAN
- Maintained Python code
- <u>Github repos for all</u>

verbal-autopsy-software Supported by the Biomemory Philarthropies Data for Health Initiative, Vital Strategies and the National Institutes of Health A stolware & Philippeware A stolware & Philippeware		Google	CRAN verbal autopsy X 🤳 😨
			Images Pdf Videos News Shopping Maps Books Flights
🕜 Overview 🖟 Repositories 😰 🖽 Projects 🛇 Packages 🗚 People			
			Scholarly articles for CRAN verbal autopsy The WHO 2016 verbal autopsy instrument: An Nichole - Cited by 125
Pinned			cause-assignment algorithms for verbal autopsy - Clark - Cited by 12 The openVA toolkit for verbal autopsies - Li - Cited by 5
			CRAN https://cran.r-project.org.v
ackage for openVA: a suite of tools for multiple VA methods R package for preparing data for openVA from ODK 않고 앞5			openVA: Automated Method for Verbal Autopsy
			Mar 18, 2023 — Implements multiple existing open-source algorithms for coding cause of death from verbal autopsies. The methods implemented include 'InterVA4'
			CRAN https://cran.rproject.org.veeb.packages.cop
R package for InSilicoVA framework	R package for InterVA-5 software		openVA: Automated Method for Verbal Autopsy
●R ☆3 ¥6	●R ☆2 ¥6		Naive Bayes classifiers for verbal autopsies: comparison to physician-based classification for 21,000 child and adult deaths. BMC Medicine. 2015;13:286. See
			CRAN https://cran.r-project.org >
● R 💱 4	● R ¥ 4		Package InSilicoVA Sep 29, 2022 — It uses data derived from verbal autopsy (VA) interviews, in a format
Repositories			Sep 29, 2022 — It uses sata derived incri verbal autopsy (VA) interviews, in a format similar to the input of the widely used 'InterVA' method. This package
Q Find a repository	Type - Language -	Sort -	CRAN https://oran./-project.org > :
			Package CrossVA Aug 10, 2021 — Enables transformation of Verbal Autopsy data collected with the WHO
openva_pipeline Public Software for automating the processing of verbal autopsy data			2016 questionnaire (versions 1.4.1 & 1.5.1) or the WHO 2014 questionnaire
			Others want to know :
			What is the verbal autopsy approach?
DHIS2_VA_program Public DHIS2 VA program metadata repository			What is a verbal autopsy for maternal death?
			How accurate is a verbal autopsy?
pyCrossVA Public			What is a verbal autopsy and social autopsy?
●Python ☆ 1 4⊉ GPL-3.0 ♥ 5 ⊙ 0 \$\$ 0 Updated			The Comprehensive R Archive Network
website (Public)			Ine Comprehensive K Archive Network The Comprehensive K Archive Network InsilicoVA: Probabilistic Verbal Autopsy Coding with '
website for openva.com			Li, Clara Calvert, Amelia C. Crampin, Kathleen Kahn and Samuel. J. Clark Probabilistic
●HTML ☆0 ♀0 ⊙0 ♫0 Updated 3 weeks ago			cause-of-death assignment using verbal autopsies, Journal of the American. 43 pages
interva (Public)			CRAN https://cran.r-project.org > web > packages > Ta :
Python implementation of the InterVA algorithm for assigning causes of death to verbal autopsy data			Replicate Tariff Method for Verbal Autopsy Description Implement the Tariff algorithm for coding cause-of-death from verbal autopsies.
● Python ☆ 0 垫 GPL-3.0 撃 0 ⊙ 1 \$\$ 0 Updated			Usecription implement the lant algorithm for occuring cause-ot-death from verbal autopsies. The Tar-1f fifterchod was originally proposed in James et al (2011) < 7 pages
InterVA5 Public			The R Journal https://pumai.rgrojed.org/articles
			The openVA Toolkit for Verbal Autopsies
●R ☆ 2 4型& GPL-3.0 撃 6 ⊙ 1 \$1,0 Updated on J			Feb 24, 2023 — Verbal autopsy (VA) is a survey-based tool widely used to infer cause The openVA suite consists of four core packages that are on CRAN,
probbase (Public)			The Comprehensive R Archive Network Hitps://can.r-project.org - web - packages - Cz
	s of death to verbal autopsy data using the		mapsurerant/reprotectiong > web > peokages > Cr :

Global VA standards

- Member of WHO Verbal Autopsy Reference Group (VARG)
- Create and maintain WHO standard VA instrument
- ODK definition for instrument
- Training materials for VA field team
- Question-by-question guidance for interviewers
- Wide variety of supporting tasks
- VARG web page

Reference Death Archive - 1

- Algorithms combine VA data and symptom-cause information SCI to classify deaths by cause
- SCI describe relationships between VA algorithm indicators and VA causes
- SCI drive operation of algorithms
- For CCVA to be accurate and comparable
 - SCI must reflect changing epidemiological circumstances and localized nuances in indicator/cause relationships
 - Must be updated through time to reflect changes
 - Must be widely available in standard form appropriate for algorithms
- Sources for SCI
 - Crowdsource from physicians: Pr(s|c)
 - Calculate directly from reference deaths with both standard VA and reference cause

Reference Death Archive - 2

- Crowdsourced SCI comparatively low information
- Because of dimensionality and unevenness of VA classification task, reference death SCI require large number of deaths: 10⁵ - 10⁶
 - Deaths not evenly distributed by cause
 - Roughly 10,000-15,000 meaningful relationships
 - Need reasonable number of observations for each relationship to characterize conditionally independent relationships and dependence big challenge!
- To cover variety of epidemiological/localized circumstances, reference deaths must be drawn from wide variety of settings
- To follow temporal evolution of relationships, reference deaths must be continuously contributed

Reference Death Archive - 3

- Build an archive of reference deaths
- Hosted by reliable, trustworthy 3rd party: WHO
- Available to all VA researchers and VA users
- Researchers
 - Create/improve SCI
 - Develop/improve algorithms
 - Test/validate algorithms
- VA users have access to continuously updated SCI
 - For all algorithms
 - Cover wide variety of epidemiological circumstances and time
 - Allow comparable CCVA cause
 - Archived for future reference
 - Integrated with CCVA software ease of use

What the openVA Team has accomplished so far

VA Interview

- Very challenging situation!
- Observed interview in many diverse socio-cultural, linguistic settings
- Characterized variation in and developing recommendations to partially standardize and improve
 - Interview design
 - Language use
 - Translation and interpretation
- Documented different approaches to eliciting narrative account
- Working to develop algorithm-assisted 'dynamic interview'
- Observed emotional strain on interview/field teams
- Developing recommendations to improve emotional health of all involved

VA algorithms

- Created, tested, validated, and many applications of <u>InSilicoVA Algorithm</u>
 - Individual and population-level consistent probabilistic estimates of COD and CSMF
 - Consistent uncertainty in COD and CSMF
 - No 'undetermined' causes hard to classify deaths are very uncertain flat, wide distribution
 - Reasonable computational performance
- Re-implemented all existing algorithms except Tariff 2.0 in R and Python
- Developed a number of approaches to addressing dependance among symptoms, e.g. <u>https://arxiv.org/abs/2112.12186</u> (accepted to AOAS yesterday)
 - For now, computationally too expensive for routine use
 - Need better (empirical) SCI
- Conducted only fully <u>fair comparison</u> of algorithm performance
 - \circ ~ Accounted for variation in SCI and algorithmic logic \rightarrow SCI more important
 - No algorithms perform extremely well; InSilicoVA performs best all together but not in every single situation
- Developing new approach to incorporate augmented SCI MITS

VA software

- **openVA** suit of algorithms in R and Python
- **openVA Pipeline** for CRVS integration fully automates:
 - Retrieval of VA deaths from ODK Connect server
 - CCVA cause assignment using any algorithm
 - Packaging raw data and results of assignment into compact format
 - Push full results to DHIS-2 (District Health Information System)
- crossVA in R and Python
 - Data checks and transformations
- Various methods of delivering workable software: packages, Docker, executable
- openVA Toolkit publication in *R Journal* as companion to software
- User-friendly GUI openVA Application in Python (new, not on PyPI yet)
 - What CRVS users actually want right now
- Open source packages and modules on <u>CRAN</u>, <u>Github</u>, and <u>PyPI</u>

Reference Death Archive

- New project starting now with support from Bill and Melinda Gates Foundation
- Reference deaths with <u>WHO standard VA</u>, <u>independent reference cause</u>, and <u>minimally-invasive tissue sample (MITS) information</u>
- Building computational infrastructure to be hosted by WHO in Geneva
- Sourcing reference deaths from
 - CHAMPS and COMSA mortality surveillance projects
 - Brazilian vital statistics system, starting in Sao Paulo
- Future deaths sourced from same places plus wide variety of VA users, including routine mortality surveillance at national scale/CRVS
- Planned products
 - Reference deaths easily available in well-documented and standard form via secure enclave
 - Regularly updated SCI for all algorithms available through API

Limitations

. . .

- VA is still a low-information, extremely challenging method accuracy stubbornly low
- No current method fully accounts for uncertainty in interview/data, SCI, and algorithm all results are over-confident, only InSilicoVA attempts this
- Communication of limitations to end users almost non-existent urgent need to develop training for decision/policy makers on how to interpret, utilize VA results
- All current algorithms assume conditional independence of symptoms given cause addressing this will greatly improve accuracy and uncertainty, requires much better SCI and clever implementation to make computation feasible
- Interview needs attention in many ways standardization, streamlining, emotional strain, etc.

How are we doing on the DSSG guidelines?

- 1. Is the ultimate objective a consequential social good? YES
- 2. Is the aproach
 - a. Affecting inequality in a negative way? MAYBE currently, SCI not general enough
 - b. Feasible in the target context? **YES**
 - c. Self-sustainable in the target context? **PROBABLY**
- 3. What are potential unintended consequences, positive and negative? MANY, uncertain causes used inappropriately or with too much confidence legal issues and overconfident public health decision-making, etc.
- 4. Can negative unintended consequences be resolved? **PROBABLY**, needs much more effort and focus
- 5. Is there a feasible, useful plan for the future
 - a. How do academics disengage? GETTING THERE!
 - b. If academics must be continually involved, how is this supported? SOLUTIONS EXIST
- 6. Is the overall approach academically sustainable YES
 - a. Academic training YES
 - b. Academic career progression: hiring, tenure, promotion YES

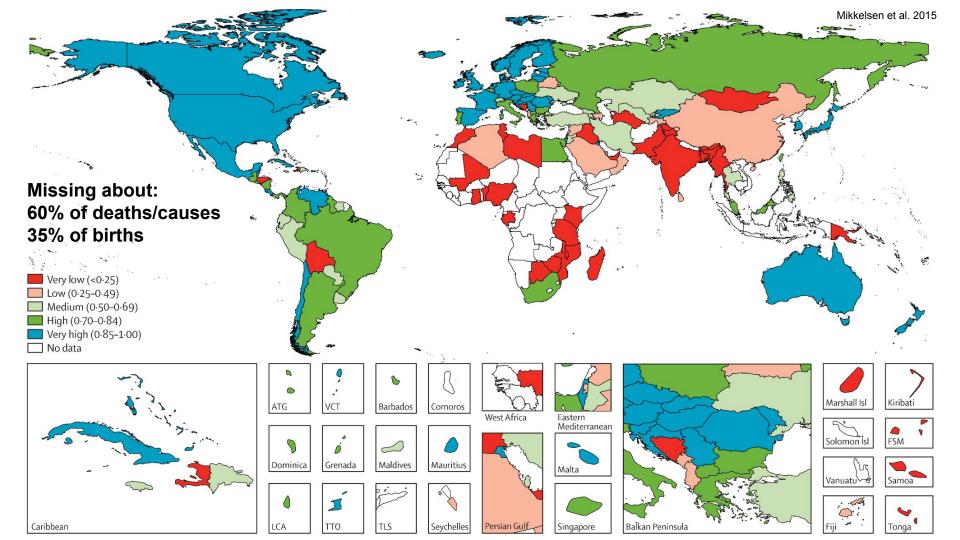
Future work

- Continue to improve algorithms
 - Accuracy/uncertainty
 - Dependence
 - Domain adaptation
 - Computation performance
 - Incorporate additional information into process through augmented SCI MITS, medical records, etc.
- Continue to create software tools for routine, large-scale use CRVS
- Develop guidelines/recommendations to improve interview, test them
- Finish the RDA and stimulate contribution of quality reference deaths with additional information MITS, medical records, etc.
- Create and support a consortium of VA researchers and software developers
- Continue efforts to decolonize this work
- Continue contributing to global standards and development of standard training materials

Reflections on DSSG questions - 1

- Attempting to do DSSG well is complex and difficult
- Many new kinds of partners and funders required
 - Traditional research support
 - Implementation partners and support through contracts
 - Time-consuming participation in community standards, governance WHO
- Need to develop large, diverse network a lot of time and effort
- Need many disciplines
 - Demography, epidemiology, statistics, computer science, linguists, anthropology
 - Can they work together effectively?
 - How to manage everyone so that it's worthwhile in each of their contexts?
- Need diverse set of users to test and implement

Reflections on DSSG questions - 2


- Impact beyond academic publishing
 - Software, real-world impacts, advocacy, etc.
 - Goes beyond traditional academic research, teaching, academic service
 - Can one get academic credit, get hired or promoted ?
- Valid efforts to create/maintain fair algorithmic methods requires massive extra, continuing, testing and validation - way beyond what's necessary for a paper
- Many machine learning-type methods require *massive training data* whole new challenge for academic research
 - Also where the unfairness and bias creep in
 - Need a whole lot more work on general principle for this in social, behavioral, and health sciences
- Money tempting to make it about money, have to balance this with 'social good' - no suggestions for how to resolve this!

How to prepare for this kind of work - my take

- Identify a very consequential question and corresponding application
- Must have training in
 - computer science and real programming programming a script-based, interpreted statistics package is not real programming!
 - Statistics
 - **Substantive field -** sociology, anthropology, demography, or epidemiology, etc.
- To run this kind of project, also need leadership training
 - People, project, and financial management
 - These rapidly become big projects with lots of moving parts that need significant support and competent management
- Work to develop **diverse network of colleagues** and mentors/advisors
- Be willing to do lots of things that are 'out of your comfort zone'
- Develop a **diverse set of funders** research funders don't usually fund implementation and vice versa, <u>this requires both</u>
- Withstand lots of narrow critiques of what you're doing!
- Accept slower progression through your career

Acknowledgements

- All joint work with the openVA Team and its supporters and collaborators, see <u>openva.net (link)</u> thanks to all!
- For publications and working papers related to VA (and other things), see <u>Sam's bibliography (link)</u>
- We are grateful for support from
 - NICHD
 - Bloomberg Philanthropies' Data for Health Initiative
 - CDC Foundation
 - Vital Strategies
 - Bill and Melinda Gates Foundation
 - The Ohio State University

